Mice deficient in Ext2 lack heparan sulfate and develop exostoses.
نویسندگان
چکیده
Hereditary multiple exostoses (HME) is a genetically heterogeneous human disease characterized by the development of bony outgrowths near the ends of long bones. HME results from mutations in EXT1 and EXT2, genes that encode glycosyltransferases that synthesize heparan sulfate chains. To study the relationship of the disease to mutations in these genes, we generated Ext2-null mice by gene targeting. Homozygous mutant embryos developed normally until embryonic day 6.0, when they became growth arrested and failed to gastrulate, pointing to the early essential role for heparan sulfate in developing embryos. Heterozygotes had a normal lifespan and were fertile; however, analysis of their skeletons showed that about one-third of the animals formed one or more ectopic bone growths (exostoses). Significantly, all of the mice showed multiple abnormalities in cartilage differentiation, including disorganization of chondrocytes in long bones and premature hypertrophy in costochondral cartilage. These changes were not attributable to a defect in hedgehog signaling, suggesting that they arise from deficiencies in other heparan sulfate-dependent pathways. The finding that haploinsufficiency triggers abnormal cartilage differentiation gives insight into the complex molecular mechanisms underlying the development of exostoses.
منابع مشابه
Loss of Function in Heparan Sulfate Elongation Genes EXT1 and EXT 2 Results in Improved Nitric Oxide Bioavailability and Endothelial Function
BACKGROUND Heparanase is the major enzyme involved in degradation of endothelial heparan sulfates, which is associated with impaired endothelial nitric oxide synthesis. However, the effect of heparan sulfate chain length in relation to endothelial function and nitric oxide availability has never been investigated. We studied the effect of heterozygous mutations in heparan sulfate elongation gen...
متن کاملBiosynthesis of heparan sulfate in EXT1-deficient cells.
HS (heparan sulfate) is synthesized by HS co-polymerases encoded by the EXT1 and EXT2 genes (exostosin 1 and 2), which are known as causative genes for hereditary multiple exostoses, a dominantly inherited genetic disorder characterized by multiple cartilaginous tumours. It has been thought that the hetero-oligomeric EXT1-EXT2 complex is the biologically relevant form of the polymerase and that...
متن کاملThe EXT1/EXT2 tumor suppressors: catalytic activities and role in heparan sulfate biosynthesis.
The D-glucuronyltransferase and N-acetyl-D-glucosaminyltransferase reactions in heparan sulfate biosynthesis have been associated with two genes, EXT1 and EXT2, which are also implicated in the inherited bone disorder, multiple exostoses. Since the cell systems used to express recombinant EXT proteins synthesize endogenous heparan sulfate, and the EXT proteins tend to associate, it has not been...
متن کاملHereditary multiple exostoses and heparan sulfate polymerization.
Hereditary multiple exostoses (HME, OMIM 133700, 133701) results from mutations in EXT1 and EXT2, genes encoding the copolymerase responsible for heparan sulfate (HS) biosynthesis. Members of this multigene family share the ability to transfer N-acetylglucosamine to a variety of oligosaccharide acceptors. EXT1 and EXT2 encode the copolymerase, whereas the roles of the other EXT family members (...
متن کاملAberrant perichondrial BMP signaling mediates multiple osteochondromagenesis in mice.
Multiple hereditary exostoses (MHE) is characterized by the development of numerous benign bony tumors (osteochondromas). Although it has been well established that MHE is caused by mutations in EXT1 and EXT2, which encode glycosyltransferase essential for heparan sulfate (HS) biosynthesis, the cellular origin and molecular mechanisms of MHE remain elusive. Here, we show that in Ext1 mutant mic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 132 22 شماره
صفحات -
تاریخ انتشار 2005